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Abstract

The simulation of cutting forces in milling is a prerequisite for reliable process modeling. Among the different approaches used in the literature,
the mechanistic models show good compromise between good precision and reasonable simulation time. The main challenge for these models is
the identification of their parameters, such as the cutting coefficients, for a given tool/material couple.
This paper presents a method based on an inverse analysis to identify these parameters. At first, the preprocessing of the signal is made to
automatically detect the time during which the cutter is actively engaged in the workpiece. The consistency of the input data is also checked to
reject outliers. Then, to avoid the classical pitfalls of this approach such as the non-uniqueness of solution, the identification is made on a whole
database of results using an iterative method. The use of optimization algorithm allows the identification of parameters having nonlinear effect on
the results such as cutter runout.
A set of 57 milling tests in Ti6Al4V alloys have been used to demonstrate the effectiveness of this method. It allows a reduction of 5 to 20% of
the root mean square error between the model and the measurements as compared to the use of coefficients identified on a single cutting test.
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1. Introduction

Accurate computation of cutting forces during machining
operation is a key aspect for a reliable simulation of the whole
process. Chatter vibration is an example of problem that can
be modelled and control based on predictive models [1, 2, 3].
Mechanistic models are often selected for their ease of use and
reliability [4, 5, 6]. The drawback of this method is that the
input parameters of the cutting force model are often difficult
to find out from intrinsic properties of the materials such as
Young’s modulus, yield strength or hardness.

This disadvantage can be resolved using inverse analysis
method that allows the identification of the cutting forces model
parameters from the recording of the cutting forces during a ma-
chining operation.

An inverse analysis procedure has been previously devel-
oped, able to identify, in addition to the cutting force model
parameters, unknown parameters that affect the cutting process
such as runout [7] for a single operation. This approach based
on the instantaneous signal of cutting force can include more
precise model of the cutter geometry or cutting force model
than methods based on averaged forces [8] as highlighted in

[9]. For example, it is possible to take into account a nonlinear
evolution of the specific pressure with respect to the actual un-
deformed chip thickness.
The present paper proposes a method to extend the concept
to the identification of cutting force model parameters using a
set of experimental test to enhance the reliability of the iden-
tification. It allows, among others, the problem of the non-
uniqueness of the solution if a single cutting condition is se-
lected for the identification. The paper will describe the inverse
analysis procedure followed by the two-pass optimisation loop.
The method will then be used on a database of milling tests per-
formed on a titanium alloy to compare the quality of the fit as
compared to previous method of identification.

2. Description of the method

The inverse analysis procedure is divided in several steps.
At first, a preprocessing of the signal intended to correct the
possible drift of the piezoelectric sensor, extract the useful part
of the signal (while the cutter is actually machining the part)
and find the actual spindle speed to average the cutting forces
along all revolutions of the cutter.2212-8271© 2025 The Authors. Published by Elsevier B.V.
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Then inverse analysis method is applied obtains a first guess
of the parameters having nonlinear effect (initial shift of the cut-
ter, runout of the cutter,...) on each signal individually. A multi-
pass optimisation algorithm is applied to the whole database
which at first gets a first estimation of the cutting force model
parameters considering these parameters remians constant, then
frees then to refine the results of the previous steps. The global
procedure is summarized in figure 1.

Fig. 1. Algorithm for the identification

2.1. Preprocessing

The typical cutting force measurement made using a piezo-
electric dynamometer measures different phases (figure 2) of
the cutting process: 1) an initial phase when the cutter is not
in contact with the workpiece 2) a transition phase when the
immersion angle gradually increase to its nominal value 3) the
useful part of the signal during which the cutting parameters
remain constant 4) an exit phase when the cutter progressively
loses its contact with the workpiece. These can be repeated sev-
eral times if the recording includes multi-pass machining op-
eration. A preprocessing phase is thus necessary to extract the
useful part of the signal automatically.

2.1.1. Offset and useful signal extraction
For the offset of the sensor, the mathematical mean value of

cutting force along x, y and z axis is computed during phase
1 of the recording and is subtracted from the measured force
along the respective axis. The recording time is then divided
in m sets of n time intervals (selected such as each interval ac-
counts for hundred revolutions of the tool) and the root mean
square (RMS) value of the signal is evaluated as:

RMS j =

√√ n∑
i=1

(
F j,i − µ j

)2
(1)

Fig. 2. Cutting force measurement pattern

where F j,i is the ith force value in the jth time interval and µ j the
arithmetic mean of F over the jth interval. A threshold is then
use to determine the intervals for which RMS is significantly
different from zero (thus the tool is machining the workpiece).
A convenient value of the threshold is the value of 5 time the
RMS value of the signal recorded at the first seconds of the
measurement file (so while the cutter is out of the material.
Finally, the entry and exit phase of the signal are removed from
the intervals. a second treshold is determined as:

treshold = µRMS − σRMS /2 (2)

with µRMS and σRMS the mean value and the standard deviation
of the root mean square (RMS) value of cutting forces during
the phase identified as into the material.

2.1.2. Actual spindle speed estimations and averaging
As the identification method is based on the temporal evo-

lution of the cutting force, the exact knowledge of the spindle
speed used for the machining operation is crucial. However, the
real spindle speed may slightly differs from the programmed,
causing potential accumulated errors during the identification
procedure. To hinder this problem, an averaging technique is
used to identify precisely the actual cutting speed by minimiz-
ing the RMS difference of the cutting force signal over succes-
sive cutter revolutions [10].

Figures 3 and 4 show the superimposition of the cutting
force along x direction for each tool revolution while the spin-
dle speed has been correctly identified (figure 3) and while the
prediction is incorrect (figure 4).

2.2. Inverse analysis

this phase allows the identification of a first guess of the ini-
tial shift α (angular position of the first tooth of the cutter at
initial time of the recording) and runout parameters ρ and λ of
the cutter for each individual recording.
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Fig. 3. Superposition of signals while the spindle speed is correct

Fig. 4. Superposition of signals while spindle speed is incorrect

The mill is divided in nd disks along its axis. On each disk
the infinitesimal forces along tangential (t), radial (r) and axial
(a)are computed usingthe model proposed by Altintas [1]:

dFt = Kte · dS + Ktc · h · db
dFr = Kre · dS + Krc · h · db
dFa = Kae · dS + Kac · h · db

(3)

h is the undeformed chip thickness, db is the projected length of
an infinitesimal cutting flute in the direction along the cutting
velocity and dS the local cutting edge length). The coefficients
K.c are the specific pressure (linked to the shearing of the chip)
that needs to be identified. The edges coefficients K.e(linked to
the edge forces) can be included in the model depending on the
choice of the user or assume to be equal to zero. The identi-
fication method rewrites equation 3 into a matrix relationship
between cutting forces and cutting coefficients:


dFt

dFr

dFa

 = [A] ·

{K}︷ ︸︸ ︷

Ktc

Krc

Kac

Kte

Kre

Kae


or = [A] ·

{K}︷ ︸︸ ︷
Ktc

Krc

Kac

 (4)

[A] =

 h · db 0 0 dS 0 0
0 h · db 0 0 dS 0
0 0 h · db 0 0 dS

 (5)

The forces are projected in the reference frame of the mea-
surement device. The classical transformation matrix [B] per-
forms the projection (κ is the axial immersion angle).

dFx

dFy

dFz

 = [B] ·


dFt

dFr

dFa

 (6)

[B] =

− cos θ − sin θ · sin κ − sin θ · cos κ
sin θ − cos θ · sin κ − cos θ · cos κ
0 − cos κ − sin κ

 (7)

The immersion angle θ takes three parameters into account:

• rotation of the tool (Ω · dt with Ω the spindle speed);
• shift of each cutting edge around the tool ( 2π

Z for a tool
with Z edges and uniform pitch);
• shift of the cutting edge due to helix angle ( 2z tan i

D for a
cylindrical mill, see [5] for other geometries);

These relationships are then added for each tooth and each
slice to perform numerical integration along the cutting edges:

Fx

Fy

Fz

 =
nd∑
i=1

Z∑
j=1


dFx(i, j)
dFy(i, j)
dFz(i, j)


=

[C]︷                ︸︸                ︷ nd∑
i=1

nt∑
j=1

[B] · [A]

 · {K} (8)

Matrix [C] (dimension 3x6 or 3x3 depending on the selected
cutting force model) links cutting coefficients to cutting forces.
At each time step a matrix

[
Ck
]

can be build (k is the index of
the current time step). This method is similar to the work of
Ko and Cho [6] but instead of finding the cutting coefficients
for each time step, all the matrices are [C] assembled to get a
global system:

[F]︷ ︸︸ ︷

F1
x

F1
y

F1
z

F2
x

F2
y

F2
z

...


=

[D]︷              ︸︸              ︷

C1

C2

...


· {K} (9)
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The cutting forces parameters can be computed by filling the
vector {F} with the measured forces and by applying least
square fitting method to solve the overdetermined system:

[K] =
(
[D]T [D]

)−1
·
(
[D]T [F]

)
(10)

[K] is the matrix containing the six unknown coefficients, [D],
the assembly of all

[
Ck
]

matrices and [F] the measured cutting
forces.
While the cutting coefficients are obtained, the cutting forces
can be simulated and the quality of the fitting can be estimated
by the root mean square error between computed (Fc) and mea-
sured effort (Fm):

RMS error =

√
npoints∑

i=0

((
F i

c − F i
m

)
· ∆θ
)2

θend − θbegin
(11)

This indicator is used to determine the parameters that have a
nonlinear effect on the computation of the cutting forces such
as the initial shift of the cutter α and the runout of the cutter ρ
and α [7].

2.3. Optimisation

Optimisation procedure works in three steps:

• all cutting force measurements are assembled in a sin-
gle numerical system to get a single set of cutting force
model parameters for the whole database;
• the values of runout and initial shift are refined using an

optimisation algorithm to get the final coefficients of the
cutting force model.

2.4. Global analysis

Based on the inverse analysis performed at the previous step,
a global system of equation is created as

[F]glob︷     ︸︸     ︷
[F]meas

1
...
[F]meas

n

 =
[D]glob︷                 ︸︸                 ︷

[
D (ρ1, λ1, α1)

]
1

...[
D (ρn, λn, αn)

]
n

 ·
{
Kglob

}
(12)

[F]meas
i is the vector containing the cutting forces for the

ith cutting test in the database,
[
D (ρi, λi, αi)

]
i is the matrix D

computed in the previous step. This overdetermined system is
solved using the Moore-Penrose pseudo-inverse to get a global
set of parameters Kglob for the cutting force model.

2.5. Optimisation loop

In this final step, the initial guesses for ρi, λi and αi are re-
fined using an optimisation procedure. The objective is to min-
imise the RMS value of the difference between simulated and
measured signal for the whole database. Nelder Mead algorithm
[11] is used for this final step.

3. Application of the method

3.1. Experimental plan

A database of cutting tests on a workpiece in titanium
(Ti6Al4V) has been used for the validation of the approach. The
tool is a 2 mm diameter cylindrical endmill with 2 teeth with
an helix angle of 20◦ (reference SECO 512020Z2.0-SIRON-A).
A static dynamometer (Kistler MiniDyn 9256C2) recorded the
cutting forces. The experimental set up is visible on figure 5.

Fig. 5. Experimental setup

Cutting tests have been carried out using two different cut-
ting configurations: Half immersion downmilling (ae = D/2)
and slotting (ae ≥ D). No lubrication has been used during the
machining. These cutting tests have been carried on a range of
cutting speeds and feed per tooth around the values provided by
the supplier of the tool (ensuring compatibility of cutting con-
ditions with the tool/material couple and the edge radius of the
cutter.):

• for half immersion downmilling
– Cutting speed of 60, 75 and 90 m/min
– Feed per tooth of 0.008, 0.009, 0.01, 0.011 and

0.012 mm/tooth
• for slot milling:

– Cutting speed of 48, 60 and 72 m/min
– Feed per tooth of 0.0048, 0.0054, 0.006, 0.0066 and

0.0072 mm/tooth

The axial depth of cut was selected to ensure stable cutting con-
ditions, minimizing cutter vibrations that could interfere with
the identification process. All combinations have been tested,
most of them repeated twice to get 57 individual tests. Cutting
force signal has been filtered with a Butterworth low-pass filter
(4th order, cutoff frequency of 2000 Hz) to take into account the
bandwidth of the sensor.

Four cases have been compared in this study:
4
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• the identification of the cutting coefficients for each test
individually which give a lower bound of the error be-
tween model and measurement but no predictive value to
the model;
• the use of a single set of cutting condition in the middle

of the range of all cutting parameters tested is used for
the identification ;
• the global optimisation proposed in this paper without the

final step of optimisation;
• the global optimisation proposed in this paper with the

final optimisation step.

The analysis of the results will focus on the components of the
cutting force acting in the plane perpendicular to the spindle
axis (x along feed and y perpendicular to this direction) consid-
ering that these two components are the most crucial to charac-
terise cutting dynamics in classical machine tools. Force along
the axis of the cutter will be presented on the graphs but not
commented. Table 1 shows the analysis of the RMS difference
between the measured and computed forces in x and y direction
for the whole database.

mean min max
RMS (N) RMS (N) RMS (N)

Individual fit 7.75 4.20 14.31
Fit on a single test 10.53 4.22 15.81
Global coefficient 9.99 4.75 14.82
Global optimized 9.83 4.70 14.79

Table 1. RMS values for the four cases studied in the paper

3.2. Individual fit

While performing the identification on each cutting force
signal individually, the specific pressures exhibit a large vari-
ation with Kr ranging from 2000 to 3150 MPa and Kt ranging
from 1500 to 3450 MPa (figure 6) showing that this approach is
not suitable to get a predictive model. The high ratio Kr/Kt may
be attributed to the significant friction between the tool and the
titanium alloy, exacerbated by the dry cutting conditions. The
RMS value of the difference between measured and simulated
signal ranges from 4.20 to 14.31 N. Figure 6 show the disper-
sion of the identified coefficients.

3.3. Fit on a single test

A classical approach used in the literature is to use a set of
cutting parameters in the middle of the range for the identifica-
tion of the cutting coefficients. For this paper, half immersion
downmilling with a cutting speed of 75 m/min and a feed per
tooth of 0.008 mm/tooth is selected. The fit is obviously the best
for this set of cutting condition (see figure 7). The impact of cut-
ter runout is clearly visible on the graph and the identification
procedure is able to catch it efficiently.

This approach leads to higher mean deviation as compared to
the previous case (10.53 N vs 7.75 N). In addition, a larger max-
imum error can be experienced for some of the cutting condi-

Fig. 6. Cutting force model parameters identified for each cutting tests individ-
ually.

Fig. 7. Cutting forces along feed (blue), lateral (red) and axial (green) direction.
Plain lines are the measured values, lines with markers are the simulated values

tions. For example figure 8 show the comparison between mea-
sured and simulated signal for a cutting test in half immersion
downmilling with a cutting speed of 90 m/min and a feed of
0.012 mm/min which is far from the reference condition. An
important discrepancy (for example for the maximum value of
the force) can be seen on the graph.

3.4. Global identification

The time needed for the optimisation is fairly short (15 min-
utes on a laptop with a I3-2310M CPU (2.10 GHz) and 4 Gb
of RAM). This approach reduces the mean and maximum de-
viation as compared to the model using the cutting coefficients
identified on a single cutting test (9.99 N vs 10.53 N for the
mean value and 14.82 N vs 15.81 N for the maximum value)
and provides a strating point for the final optimisation loop.
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Fig. 8. Cutting forces along feed (blue), lateral (red) and axial (green) direction.
Plain lines are the measured values, lines with markers are the simulated values

3.5. Global optimisation

The final optimisation unlocks the parameters with a non-
linear effect on the model. This last phase is the most compu-
tationally intensive of the procedure, adding around 45 min-
utes of computation before reaching convergence. This leads to
the final identification of parameters of the cutting force law
(Kt=2577 MPa, Kr=2139 MPa). This last step of optimisation
allows a marginal gain in precision for the model (around 1 %
improvement for all indicators) but strengthens the confidence
in the model. For example,figure 9 shows the comparison be-
tween measured and simulated forces for the slotting case at a
cutting speed of 60 m/min and 0.006 mm/tooth feed.

Fig. 9. Cutting forces along feed (blue), lateral (red) and axial (green) direction.
Plain lines are the measured values, lines with markers are the simulated values

4. Conclusions

This paper presents a method used to identify the cutting
parameters model coefficients as well as variables needed to
model cutting forces in milling that are difficult to measure
in practical conditions (initial shift of the cutter, runout,...). A
global optimisation loop allows the identification of coefficients
valid for a set of cutting tests using different cutting param-
eters to ensure that the identified model remains valid along
a wider range of cutting conditions. On a set of milling tests
performed on Ti6Al4V, this method allows identifying a model
whose precision is close to the results obtained by setting a ded-
icated model for each cutting test.
The proposed approach is generic and could be used to iden-
tify cutting coefficients while machining with more complex
tool geometry. The identification of more complex cutting force
models is also possible within the same framework of identifi-
cation.
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